

PII: S0040-4039(96)01838-2

Orthogonally protected Dialkynes

Alexander Ernst, Luca Gobbi‡ and Andrea Vasella*1

Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, ETH Zentrum, Universitätstr. 16, CH-8092 Zürich.

Abstract: Several C-SiMe₃ and C-GeMe₃ protected dialkynes have been synthesized and regioselectively deprotected by protodesilylation or protodegermylation. Catalytic amounts of CuBr in THF/MeOH or in aqueous acetone lead exclusively to protodegermylation. The Me₃Si group was removed with KF/[18]-crown-6 in aqueous THF without affecting the GeMe₃ group. C-SiMe₃ protected propargyl ethers are also selectively cleaved with K₂CO₃ in THF/ MeOH. Copyright © 1996 Elsevier Science Ltd

Nanoscale molecules ('nanostructures') with potentially new electronical, optical, or chemical properties are most efficiently prepared in a binomial way 2,3 . Ideally, this strategy uses orthogonally protected building blocks, as demonstrated in the synthesis of oligoethylenes 3a , oligo(arylalkyne)s 3b,c , oligophenyls 3d , oligoesters 3e , oligonucleotides 3f , and oligosaccharides 3g . Orthogonally protected (α,ω) -dialkynes will allow the preparation of unsymmetrical oligo(butadiynediyl)s. They should considerably broaden the scope of the synthesis of nanostructures and also prove useful, e.g., in the synthesis of enediyne antibiotics 5a , enzyme mimics 5b , and carbon rich networks 5c .

In connection with our binomial synthesis of oligosaccharide analogues⁶ we have introduced the first orthogonal protecting groups for dialkynes, *viz.* the Me₃Si and the dimethyl-[1,1-dimethyl-3-(tetrahydro-2*H*-pyran-2-yloxy)propyl]silyl (DOPS⁷) groups. They can independently be proto- or bromodesilylated. As the synthesis of the DOPS protected ethynyl building block requires six steps, we have prepared *C*–SiMe₃ and *C*–GeMe₃ protected carbohydrate-derived dialkynes and demonstrated^{6,8} that they are selectively protodesilylated and bromo- or iododegermylated.

We now describe convenient procedures for the preparation of C-SiMe₃ and C-GeMe₃ protected dialkynes and for their orthogonal deprotection by protodesilylation and protodegermylation.

Conditions: a) HC ≡CGeMe₃, Pd(PPh₃)₄, Cul, NEt₃; 62%. b) HC ≡CGeMe₃, Pd(PPh₃)₄, Cul, n-BuNH ₂, PhH, 65%. c) HC ≡CGeMe₃, PdCl₂(PPh₃)₂, Cul, NEt₃; 85%. d) HC ≡CSiMe₃, PdCl₂(PPh₃)₂, Cul, NEt₃; 88%. e) HC ≡CSiMe₃, PdCl₂(PPh₃)₂, Cul, NEt₃; 74%, see ref. 13. f) i: NaOH_{ag} in MeOH, see ref. 13. ii: EtMgBr, THF, ClGeMe₃; 81%. g) HC ≡CGeMe₃, PdCl₂(PPh₃)₄, Cul, NEt₃; 82%. h) n-BuLi, THF, ClGeMe₃; 93%, see ref. 6.

The C-SiMe₃ and C-GeMe₃ protected dialkynes⁹ 1 and 2 (Scheme 1) were made by a Castro-Stephens-Sonogashira-type cross-coupling of ethynyltrimethylgermane 10a with 1-bromo-2-(tri-

Conditions: a) CuBr (10 mol-%), THF/MeOH. b) KF, [18]-crown-6, THF aq. c) K₂CO₃ in MeOH/THF.

methylsilyl)ethynylbenzene 11 and (Z)-1-chloro-4-(trimethylsilyl)but-1-en-3-yne 12 , respectively. Cross-coupling 2,5-dibromopyridine with ethynyltrimethylsilane 10b and ethynyltrimethylger-

¹⁾ Lower yields reflect the high volatility of 2a and 2b. 2) acetone/H₂O (5:1, v/v) was used as solvent.

mane ^{10a} gave the alkynyl bromides 3¹⁴ and 4¹³, which were coupled under the same conditions to the dialkynes 5 and 6. Alternatively, 3¹⁴ was prepared from 4¹³ by desilylation with aqueous NaOH in MeOH and treatment with EtMgBr in THF for 45 min at 0°C, followed by the addition of ClGeMe₃. The synthesis of the cellobiose-derived dialkyne 7 has been described⁶.

The Me₃Ge group was best removed (Scheme 2) with catalytic amounts of CuBr¹⁵ in the presence of MeOH or H₂O. We suppose that an intermediate copper acetylide is formed via an initial π complex between CuBr and the more nucleophilic germanium substituted alkynyl moiety. The ethynyl-silicon bond was regioselectively cleaved with KF in the presence of [18]-crown-6 in aqueous THF. These conditions 16 led to a completely selective deprotection; they are compatible with double bonds, acetal functions, butadiynediyl, hydroxyl and alkoxy groups. The C-SiMe₃ protected propargyl ethers 7 and 8 are expected to be more highly electrophilic; indeed K₂CO₃ in MeOH/ THF sufficed to selectively desilylate these compounds.

Acknowledgement: We thank the Swiss National Science Foundation and F. Hoffmann-La Roche AG, Basel, for generous support.

References and Notes:

- Taken in part from the diploma work of L.G.
- ‡ 1. Oligosaccharide Analogues of Polysaccharides: Part 10. For part 9 see: Xu, J.; Egger, A.; Bernet, B.; Vasella A. Helv. Chim. Acta 1996 submitted.
- Alzeer, J; Cai, C.; Vasella, A. Helv. Chim. Acta 1995, 78, 242-264.
- see also: a) Igner E.; Paynter, O. I.; Simmonds, D. J.; Whiting, M. C. J. Chem. Soc., Perkin Trans. 1 1987, 2447-2454. b) Young, J. K.; Moore, J. S. "Acetylenes in Nanostructures". In Modern Acetylene Chemistry; Stang, P.J.; Diederich, F. Eds.; VCH, Weinheim, 1995; pp. 415-442 and references quoted there. c) Tour, J. M. Chem. Rev. 1996, 96, 537-553 and references quoted there. d) Liess, P.; Hensel, V.; Schlütter, A.-D.; Liebigs Ann. 1996, 1037-1040. e) Langweiler, U. D.; Fritz, M. G.; Seebach, D. Helv. Chim. Acta 1996, 79, 670-701. f) Z. Huang, Diss. ETH No. 10429, Eidgenössische Technische Hochschule Zürich 1993. g) Koto, S.; Uchida, T.; Zen, S. Bull. Chem. Soc. Jpn. 1973, 46, 2520. Barany, G.; Merrifield, R.B. J. Am. Chem. Soc. 1977, 99, 7363-7365.
- a) Haseltine, J. N.; Cabal, M. P.; Mantlo, N. B.; Iwasawa, N.; Yamashita, D. S.; Coleman, R. S.; Danishefsky, S. J.; Schulte, G. K. J. Am. Chem. Soc. 1991, 113, 3850-3866. Myers, A. G.; Harrington, P. M.; Kuo, E. Y. J. Am. Chem. Soc. 1991, 113, 694-695. b) Anderson, H. L.; Sanders, J. K. M. J. Chem. Soc., Perkin Trans. I 1995, 2223-2229. Arnold, D. P.; Nitschinsk, L. J. Tetrahedron Lett. 1992, 48, 8781-8782. c) Diederich, F. "Oligoacetylenes". In Modern Acetylene Chemistry; Stang, P.J.; Diederich, F. Eds.; VCH, Weinheim, 1995; pp. 443-471 and references quoted there. Grubbs, R.; Kratz, D. Chem. Ber. 1993, 126, 149-157
- Ernst, A.; Vasella, A. Helv. Chim. Acta 1996, 79, 1279-1294 and earlier papers in this series.
- Cai, C.; Vasella, A. Helv. Chim. Acta 1995, 78, 732-756. The authors suggested the acronym DOPSalkynes = $\{[d \text{ imethyl}(o xy) \text{ propyl}] \text{ dimethyl} \}$ -alkyne for a series of dimethyl-[1,1]-dimeth (tetrahydro-2*H*-pyran-2-yloxy)propyl]silyl-protected alkyne building blocks.
- Cai, C.; Vasella, A. Helv. Chim. Acta 1996, 79, 255-268. Ernst, A.; Bürli, R., Vasella A. unpublished 8.
- Satisfactory analytical data (${}^{1}H$, ${}^{13}C$, IR, $[\alpha]_{D}$, MS and/or elemental analysis) were obtained for the new compounds. Selected physical data: 1: R_f (hexane) 0.24. ¹H-NMR (300 MHz, CDCl₃): 7.50-7.42 (m, 2 H arom.); 7.29-7.17 (m, 2 H arom.); 0.46 (s, GeMe₃); 0.28 (s, SiMe₃). 2: R_f (hexane) 0.26. ¹H-NMR (200 MHz, CDCl₃): 5.87 (d, J = 11.0, HC = 3; 5.81 (d, J = 11.0, HC = 3; 0.40 (s, GeM₃); 0.22 (s, SiMe₃). 5: R_f (toluene/AcOEt 50:1) 0.58. 1 H-NMR (200 MHz, CDCl₃): 8.61 (br. d, J = 2.0, H-C(6)); 7.66 (dd, J= 7.9, J = 2.1, H-C(4)); 7.36 (br.d, J= 8.1, H-C(3)); 0.44 (s, GeMe₃); 0.25 (s, SiMe₃). 6: R_f (toluene/AcOEt 50:1) 0.59. ¹H-NMR (200 MHz, CDCl₃): 8.61 (br.d, J= 2.1, H-C(6)); 7.66 (dd, J= 8.0, 2.2, H-C(4)); 7.37 (br.d, J= 8.0, H-C(3)); 0.43 (s, GeMe₃); 0.26 (s, SiMe₃). T⁶: T⁶ (hexane/AcOEt 3:1) 0.35. ¹H-NMR (300 MHz, CDCl₃): selected signals: 4.02 ($J_{\rm c}$) 4.05 ($J_{\rm c}$); 2.65 ($J_{\rm c}$); 0.18 ($J_{\rm c}$); 0.19 (J
- GeMe₃); 0.19 (s, SiMe₃).
 a) Mironov, V.F.; Kravchenko, A.L. Bull. Acad. Sci. USSR, Chem. Sci. (Engl. Transl.) 1965, 988-995. b) purchased from Fluka or prepared according to Brandsma, L. Preparative Acetylenic Chemistry (second Edition); Elsevier, Amsterdam, 1988; pp. 114-117.
- Huynh, C.; Linstrumelle, G. Tetrahedron 1988, 44, 6337-6344.

- 12. Chemin, D.; Linstrumelle, G. Tetrahedron 1994, 50, 5335-5344.
- 13. Tilley, J. W.; Zawoisky, S. J. Org. Chem. 1988, 53, 386-390.
 - Typical procedure: Preparation of the alkynyl bromide 3:

 A. From 2,5-dibromobenzene: A degassed soln. of 2,5-dibromobenzene (150 mg, 0.63 mmol) in triethylamine (3 ml) was treated with PdCl₂(PPh₃)₂ (10 mg, 2 mol-%), CuI (2.4 mg, 2 mol-%) and cooled to 0°C. Ethynyltrimethylgermane (100 mg, 0.7 mmol) was added slowly. The mixture was stirred at r.t. for 2.5 h, poured into sat. aq. NH₄Cl-soln., extracted with Et₂O (3x), dried (MgSO₄), filtered and concentrated in vacuo. The black residue was chromatographed on a silica gel column (AcOEt/hexane 1:50) to give 3 (152 mg, 81%) as light orange solid. A small sample was recrystallized in hexane at -40°C.
 - B. From 4: The desilylation has been described 13 . A soln. of 5-bromo-2-ethynyl-pyridine (98 mg, 0.54 mmol) in THF (5.5 ml) was cooled to 0° C, treated dropwise with 1.84M EtMgBr (0.3 ml, 0.56 mmol) in THF, stirred at 0° for 45 min., treated dropwise with ClGeMe₃ (0.07 ml, 0.56 mmol), and stirred at r.t. for 15 min. Usual workup and chromotography gave 3 (118 mg, 85%). R_f (hexane/AcOEt 50:3) 0.32. M.p. 53–55°C. IR (CCl₄): 3040m, 3020w, 2982m, 2913m, 2130w, 1910w, 1660w, 1564m, 1544m, 1460s, 1448s, 1415m, 1364m, 1351m, 1244s, 1221w, 1123w, 1091s. 1 H-NMR (200 MHz, CDCl₃): 8.64 (br. d, I = 2.5, H–C(6)); 7.79 (dd, I = 8.3, 2.5, H–C(4)); 7.35 (dd, I = 8.3, 0.8, H–C(3)); 0.47 (s, GeMe₃). 13 C-NMR (75 MHz, CDCl₃): 150.80 (d, C(6)); 141.20 (s, C(2)); 138.59 (d, C(4)); 127.93 (d, C((3)); 119.79 (s, C(5)); 101.88 (s, C=CGe); 97.38 (s, C=CGe); -0.49 (q, CH₃). MS-EI: 300.9 (10), 298.9 (14, I +), 296.9 (11), 285.9 (22), 283.9 (100, I Me]+), 282.9 (20), 281.9 (74). Anal. calc for C₁₀H₁₂NBrGe (298.73): C 40.21, H 4.05; found C 40.06, H 4.09.
- Purchased from Aldrich and used without further purification.
- 16. General procedure for the protodegermylation: A 0.05-0.1M soln. of the C-SiMe₃/C-GeMe₃ protected dialkyne in MeOH/THF (1:1, v/v) or acetone/H₂O (5:1, v/v) was treated with CuBr (10 mol-%) at r.t. The orange mixture was stirred for 1-4 h¹⁷, diluted with sat. NH₄Cl soln. and extracted with Et₂O (3x). The combined org. layers were washed with water (2x) and brine (1x), dried (MgSO₄), filtered, and concentrated in vacuo. The residue was chromatographed on a silica gel column to give the degermylated dialkyne ¹⁸.

 General procedure for the protodesiblation: A 0.3M soln of KE in [18], crown 6 (1.1 eq.) was added
 - General procedure for the protodesilylation: A 0.3M soln. of KF in [18]-crown-6 (1.1 eq.) was added dropwise to a 0.05–0.1M soln. of the C-SiMe $_3/C$ -GeMe $_3$ protected dialkyne in THF/H $_2O$ (98:2, v/v) at 0°C. The mixture was stirred for 0.5-3 h, diluted with water and extracted with Et $_2O$ (3x). The combined org. layers were washed with water (2x) and brine (1x), dried (MgSO $_4$), filtered, and concentrated in vacuo. The residue was chromatographed on a silica gel column to give the desilylated dialkyne ¹⁹.
- The reaction should be monitored carefully by tlc and worked up as soon as the starting material has been consumed.
- 18. Selected physical data: $1a^{11}$: R_f (hexane) 0.29. 1 H-NMR (200 MHz, CDCl₃): 7.52–7.46 (m, 2 H arom.); 7.29–7.16 (m, 2 H arom.); 3.30 (s, H-C \equiv); 0.28 (s, SiMe₃). $2a^{20}$: R_f (hexane) 0.28. 1 H-NMR (200 MHz, CDCl₃): 5.90 (d, J = 1.1, H-C(3)); 5.82 (dd, J = 11.1, 2.2, H-C(4)); 3.37 (d, J = 2.3, H-C \equiv); 0.23 (s, SiMe₃). 5a: R_f (hexane/AcOEt 7:1) 0.32. 1 H-NMR (200 MHz, CDCl₃): 8.64 (d, J = 2.3, H-C(6)); 7.69 (dd, J = 7.8, 2.0, H-C(4)); 7.41 (br. d, J = 8.3, H-C(3)); 3.24 (s, H-C \equiv); 0.26 (s, SiMe₃). 6a⁷: R_f (toluene/AcOEt 50:1) 0.42. 1 H-NMR (200 MHz, CDCl₃): 8.65 (d, J = 2.1, H-C(6)); 7.71 (dd, J = 7.7, 1.9, H-C(4)); 7.40 (br. d, J = 8.0, H-C(3)); 3.29 (s, H-C \equiv); 0.26 (s, SiMe₃). 7a⁶: R_f (hexane/AcOEt 2:1) 0.76. 1 H-NMR (300 MHz, CDCl₃): selected signals: 2.66 (td, J ≈ 10.4, 2.3, H-C(4")); 2.20 (d, J = 2.3, HC \equiv C-C(4"); 0.20 (s, SiMe₃). 8a: R_f (toluene/AcOEt 1:1) 0.55. 1 H-NMR (400 MHz, CDCl₃): selected signals: 2.64 (td, J ≈ 10.4, 2.3, H-C(4"); 2.18 (d, J = 2.3, HC \equiv C-C(4"); 0.19 (s, SiMe₃).
- 19. Selected physical data: 1b: R_f (hexane/AcOEt 50:1) 0.49. 1 H-NMR (200 MHz, CDCl₃): 7.50–7.42 (m, 2 H arom.); 7.32–7.18 (m, 2 H arom.); 3.29 (s, H-C=); 0.44 (s, GeMe₃). 2b: R_f (pentane) 0.36. 1 H-NMR (200 MHz, CDCl₃): 5.93 (d, J = 11.2, H-C(3)); 5.79 (dd, J = 11.0, J = 2.2, H-C(4)); 3.35 (d, J = 2.2, H-C=); 0.40 (s, GeMe₃). 5b: R_f (toluene/AcOEt 50:1) 0.43. 1 H-NMR (200 MHz, CDCl₃): 8.64 (d, J = 2.0, H-C(6)); 7.70 (dd, J = 8.2, 2.1, H-C(4)); 7.38 (br. d, J = 8.2, H-C(3)); 3.28 (s, H-C=); 0.45 (s, GeMe₃). 6b: R_f (toluene/AcOEt 50:1) 0.38. 1 H-NMR (200 MHz, CDCl₃): 8.62 (d, J = 2.1, H-C(6)); 7.68 (dd, J = 7.7, 1.9, H-C(4)); 7.39 (br. d, J = 8.0, H-C(3)); 3.23 (s, H-C=); 0.44 (s, GeMe₃). 7b⁶: R_f (hexane/AcOEt 2:1) 0.46. 1 H-NMR (300 MHz, CDCl₃): selected signals: 4.02 (dd, J = 9.6, 2.1, H-C(3)); 2.66 (t, J = 10.5, H-C(4')); 2.52 (d, J = 2.1, HC=C-C(3); 0.35 (s, GeMe₃). 8b: R_f (toluene/AcOEt 1:1) 0.56. 1 H-NMR (300 MHz, CDCl₃): selected signals: 2.56 (d, J = 2.1, HC=C-C(3); 0.36 (s, GeMe₃).
- 20. McQuilkin, R. M.; Garratt, P. J.; Sondheimer, F. J. Am. Chem. Soc. 1970, 92, 6682-6683.